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1. Introduction

Recently some gravity backgrounds with non-relativistic conformal symmetry were dis-

cussed [1 – 4].1 The idea is that such backgrounds would be gravity duals of conformal

quantum mechanical systems, which are useful for describing certain condensed matter

systems (see [1, 2, 7] for references).

Here we make some comments on these constructions. These constructions involve

performing the discrete light cone quantization (DLCQ) of certain field theories and their

gravity duals. As it is well known, the DLCQ of a field theory gives a non-relativistic sys-

tem. Thus the DLCQ of a conformal field theory is expected to give a conformal quantum

mechanical system. On the other hand, DLCQ quantization is subtle. In particular, when

we perform DLCQ of gravity backgrounds we cannot naively apply the gravity approxima-

tion, since there is a circle becoming very small. Fortunately, if one considers a sector with

large non-zero light-cone momentum one can find regions in the geometry where the circle

has a non-zero size so that computations can be trusted. In this paper we will discuss some

backgrounds that arise in string theory that display a non-relativistic conformal symmetry.

One particular example where we know the conformal quantum mechanical theory and the

corresponding gravity background is the theory that arises when we do the DLCQ of the

M5 brane theory. In this case the conformal quantum mechanics was discussed in [8] and

we will review it below. We will discuss some gravity backgrounds that can be used to

perform computations which can be trusted and are predictions for results in the conformal

quantum mechanical theory. Conformal quantum mechanical systems were studied in the

context of black hole physics and AdS2, see [9] for a review and further references.

The backgrounds considered in [1, 2] enjoy non-relativistic conformal symmetry even

before taking the DLCQ limit. In this paper we embed these backgrounds in string theory

and discuss their deformation at finite temperature and finite density. In one particular

case we can relate these backgrounds to certain non-commutative dipole theories studied

in [10]. There is a simple procedure that allows us to introduce such non-commutativity

both in the field theory and in gravity [11]. A non-relativistic quantum mechanical system

is expected to arise when we perform a DLCQ quantization of such a theory. Due to the

non-commutative interpretation of the background we find that certain quantities are inde-

pendent of the non-commutativity in the planar approximation, since non-commutativity

does not change certain planar diagrams [12]. Thus for many observables computations

in the backgrounds [1, 2] are the same as in asymptotically AdS backgrounds with x−

compactified.

We also discuss consistent type IIB Kaluza-Klein reductions of AdS5×Y backgrounds,

where Y is a Sasaki-Einstein manifold, to five-dimensional systems involving massive vec-

tor fields. Our motivation is that these truncations admit solutions with (asymptotic)

non-relativistic conformal symmetries, of the type discussed in [1, 2]. Such Kaluza-Klein

reductions might be useful also for other purposes.

The contents of the paper are organised as follows: we start in section 2 by discussing

how we obtain a quantum mechanical system with non-relativistic conformal symmetry via

1For earlier work on non-relativistic conformal structures see e.g. [5, 6] and references therein.
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the discrete light cone quantisation of relativistic field theories. We also discuss subtleties

inherent in the construction. In section 3 we construct the gravity dual of these systems,

which can be trusted when we put sufficient amount of momentum along the compactified

dimension so that it becomes a spacelike circle with large radius. In section 4 we study

the consistent Kaluza-Klein reductions of type IIB supergravity on S5 or any other Sasaki-

Einstein space which retain massive gauge fields, and we show that these reductions can be

used to construct some of the supergravity solutions discussed in section 3. We conclude

the paper with a short discussion in section 5. We have a few appendices where the reader

can find the details of the calculation.

Note added: the authors learned just before completion that there will appear two

papers, one by A. Adams, K. Balasubramanian, and J. McGreevy [13] and another by C.

P. Herzog, M. Rangamani and S. F. Ross [14] which have some overlap with our present

paper.

2. Non-relativistic theories from DLCQ

2.1 DLCQ of relativistic theories in Minkowski space

It is well known that the light cone quantization of a relativistic theory looks like a non-

relativistic theory. Choosing light cone coordinates x± = t± x3 we see that the mass shell

condition for a massive particle looks like

−p+ =
~p 2

(−4p−)
+

m2

(−4p−)
(2.1)

which looks like the energy of a non-relativistic particle of mass M ∼ −p− in a constant

potential. We find it useful to write things in terms of p± with the lower index since that is

the momentum that is canonically conjugate to x± translations. One minor disadvantage

is that they are negative definite. Thus our p− = −p+/2 if we start with the ordinary

Minkowski metric, ds2 = −dx+dx− + d~x2.

In a relativistic theory p− is a continuous variable. We can make it discrete by com-

pactifying the light cone direction x− ∼ x− +2πr− [15]. We then find that p− is quantized

as

−p− =
N

r−
(2.2)

where N ≥ 0. This is called “discrete light cone quantization”. Note that the parameter

r− can be changed by doing a boost in the +− directions, which is a symmetry of the

relativistic theory. This boost is broken by the compactification. However, the fact that it

is a symmetry in the original theory implies that theories with different values of r− are

related by a simple rescaling of the generators. Though in the formulas below we will keep

r− explicitly, one could set r− = 1 without loss of generality.

If, in addition, the relativistic theory is conformal invariant, then this procedure would

formally lead to a conformal invariant quantum mechanical theory, with a symmetry group

– 3 –
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which is called the “Schrödinger group”.2 This is simply the subset of the conformal

generators which commute with p−. See appendix A for some details. This fact was

already noted in [8] where the DLCQ of the theory on M5 brane was studied.

As explained in [16], DLCQ is very subtle. One has to be careful about the zero modes.

In general these zero modes (modes with p− = 0) are described by an interacting theory

which is obtained by taking the original theory and placing it on a very small spatial circle

of vanishing size. Thus, one has to solve the problem of a field theory in one less dimension.

For example, if we start with 3+1 dimensional N = 4 super Yang Mills, the zero mode

dynamics is described by a 2+1 dimensional conformal field theory which is the IR limit of

2+1 dimensional super Yang Mills. This is also the theory that lives on M2 branes. Thus,

the proper analysis of the dynamics of a DLCQ theory is fairly non-trivial, but it can be

done in principle. This point should be kept in mind when we discuss various theories in

this paper. Proposals for the DLCQ of N = 4 super Yang Mills were made in [17, 18].

We will not give a totally explicit description of the field theory side in this case, leaving

a complete analysis of this issue for the future. Note that in this case we get a family of

conformal quantum mechanical systems that arise by taking different expectation values

of A− (and the dual photon) [17, 18].

The DLCQ procedure we outlined above is a way of generating examples of confor-

mal quantum mechanical systems. Writing out explicitly the quantum mechanical system

requires a proper analysis of the zero modes. This is an important issue for understand-

ing precisely the nature of the corresponding non-relativistic quantum mechanical system.

In particular, one would like to write down the Schrödinger equation for the quantum

mechanical system. We discuss one specific example below.

Finally, note that the discussion in [19] that links AdS3 to AdS2 and a possible con-

formal quantum mechanical dual can be interpreted as a DLCQ quantization of AdS3 in a

sector with nonzero P−.

If the parent relativistic theory has a gravity dual which is weakly coupled one can

hope to have a gravity description of the corresponding conformal quantum mechanical

system. For example, if the parent theory is N = 4 super Yang Mills, then it also has a

dual description as a gravity (or string) theory on AdS5 × S5 when the ’t Hooft coupling

g2
YMk is large. We denote by k the rank of the gauge group in order not to confuse it with

N , which is the number of quanta of the light cone momentum. Thus, one would hope

that by performing the DLCQ procedure on both sides one would get a strongly coupled

quantum mechanical system that is dual to a weakly coupled gravity solution. The DLCQ

limit of the gravity dual is simply given by identifying the x− direction in the bulk [4, 3].

One should remember, though, that this identification is not as innocent as it looks. When

we periodically identify the x− direction in the bulk we are performing a drastic change

in the theory. For example, the correct graviton scattering amplitude in the DLCQ theory

and the naive one (obtained by truncating tree level graviton scattering amplitudes in the

theory before the DLCQ) are not the same [20].

2The name comes from the fact that it is the dynamical symmetry group of the ordinary Schrödinger

equation for a free particle.
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The situation changes for the better when we introduce a large amount of momentum

N ∼ −p−r− in the DLCQ direction. In fact, one is interested in the sector of the theory

with non-zero values of N . In the bulk, this has the effect of making the size of the x−

circle spacelike in some interesting regions of the geometry. Thus, for large enough P−, or

large enough P− density, one can indeed use the gravity description for computing certain

properties of the system. We will describe this in more detail when we talk about the

gravity solutions. Let us first describe a specific example and some simple variations of

this construction.

2.2 DLCQ description of the M5 brane theory

There is one case where a fairly explicit description of the DLCQ is available in the liter-

ature. It is the case of the M5 brane theory, which is a 5+1 dimensional conformal field

theory. In DLCQ with N units of momentum, this becomes a certain conformal quantum

mechanics theory constructed as follows [8]. We start with k fivebranes and N units of

momentum along a compactified spatial direction. The small radius limit, which leads to

the DLCQ description, forces us to perform a duality to end up with N D0 branes and

k D4 branes, and to take the low energy limit of this system. The result is a quantum

mechanics theory which is a sigma model on the Higgs branch of a certain theory with 8

supercharges. It is the quantum mechanics on the moduli space of N -instantons.

This system has four-dimensional Galilean invariance and conformal invariance, so it

has the Schrödinger symmetry, but it is quite unlike the non-relativistic conformal system

which is discussed recently in the literature, e.g. N fermions interacting via contact inter-

action. Namely, each of the N instantons is not pointlike but has a size parameter which

is affected by the dilatation; there is no obvious second-quantized framework, and so on.

The resulting quantum mechanics is the following. We start with a U(N) gauge theory

with an adjoint hypermultiplet and k fundamental hypermultiplets. The bosonic variables

involve two complex adjoint matrices X, X̃ and k complex scalars qi in the N of U(N)

and k scalars q̃i in the N̄ of U(N). These fields are constrained by

[X,X†] − [X̃, X̃†] + qiq
†
i − (q̃i)†(q̃i) = 0 , [X, X̃ ] + qiq̃

i = 0. (2.3)

and we quotient by U(N) gauge transformations. This gives a space of 4Nk real dimensions

which is a hyperkähler manifold. The metric is the induced metric in the ambient space.

It can be found as follows: one constructs the Kähler potential of the ambient space

C = |qi|2 + |q̃i|2 + |X|2 + |X̃ |2, which also gives the Kähler potential of the metric in the

moduli space, after choosing complex coordinates for the moduli. C is also the special

conformal generator in the quantum mechanical theory. This defines a conformal quantum

mechanics, which becomes superconformal once we include also the fermionic degrees of

freedom [8]. For further details on the definition of the quantum mechanical theory and its

symmetries see [8]. See also [9] for a nice review on conformal and superconformal quantum

mechanics.
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2.3 DLCQ of a conformal field theory on a plane wave background

A small variation of the preceding theme is to start with a relativistic theory on a plane

wave background

ds2 = −dx+dx− − ~x 2(dx+) + d~x 2 (2.4)

where ~x stands for the transverse spatial directions. For a general field theory this also

gives us a quantum mechanical system now with particles in a harmonic oscillator potential.

The Hamiltonian is then

−p+ =
~p 2

(−4p−)
+ (−p−)~x 2 . (2.5)

The isometries of the plane wave are symmetries acting on the quantum mechanical theory.

If the field theory is conformal we have further symmetries and the resulting theory is

precisely the same as the one we obtained when we started from flat space but with a

different choice of Hamiltonian [21]. This can be understood considering the SL(2,R)

subgroup of the Schrödringer group which includes the Hamiltonian H the dilatation D

and the special conformal transformation C. Then the Hamiltonian on the plane wave

background is

Hosc = L0 =
1

2
(H + C) . (2.6)

Another variation of the idea is to take the following form of the plane wave metric

when the transverse direction is two-dimensional (or more generally even dimensional):

ds2 = −dx+(dx− − 2ρ2dψ̂) + dρ2 + ρ2dψ̂2 , (2.7)

where we took ~x = (ρ cosψ, ρ sinψ) and chose ψ̂ = ψ−x+. A particle with fixed p− moving

on this metric reduces to a non-relativistic particle moving in the transverse space in the

presence of a constant magnetic field d(ρ2dψ) with no potential. The new Hamiltonian is

related to the one above by

Hmag = Hosc − J , (2.8)

where J is the angular momentum associated to the rotation in the ~x plane.

2.4 DLCQ of dipole theories

Another variation is to consider a certain non-commutative theory, called a “dipole the-

ory” [10] (see also [11, 22, 23]). This is a theory were the field multiplication is defined via

a star product. In order to define the star product we use the conserved charge p− and

also another global symmetry charge, Q of the system. The star product is then defined

as follows

f ∗ g = ei2πσ(P f
−
Qg−P g

−
Qf )fg , (2.9)

where fg is the ordinary product and σ is an arbitrary parameter. (P f−, Q
f ) and (P g−, Q

g)

are the values of P− and Q for f and g respectively. We are imagining that f and g have

well defined values for both charges P− and Q, and we can get the product for more general

functions of f and g by the ordinary distributive property of the product.

– 6 –
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If the original theory has a symmetry that commutes with the two charges that appear

in the definition of the star product (2.9), then it will also be a symmetry of the theory after

the star product deformation. The generators of the conformal group that commute with

P− are the Schrödinger subgroup. Thus we have the Schrödinger symmetry even before

compactifying the coordinate x−. If we also compactify x− and perform a DLCQ quan-

tization we expect to get a non-relativistic conformal system. Our reason for introducing

these exotic theories is that, in some cases, their gravity duals, derived in [10, 11], are given

by the metrics introduced in [1, 2]. For more details on these theories see [10, 11, 22, 23] .

3. DLCQ of string or M theory backgrounds

3.1 DLCQ of AdS

As we saw in the previous section, one can construct a system with Schrödinger symmetry

by taking the DLCQ of a relativistic conformal theory. If the relativistic CFT is dual to

AdS we should then consider the DLCQ of AdS space. We can write the AdS metric in

the Poincaré patch as

ds2 =
dr2

r2
+ r2

(

−dx+dx− + d~x 2
)

(3.1)

and take x− ∼ x− + 2πr−. This fact has been noticed also in the recent papers [4, 3].

Since we are taking a circle to have zero size, we cannot trust this geometry to do

computations. A similar situation arises when we consider the DLCQ of eleven dimensional

supergravity. In that case the conjectured correct description is in terms of a quantum

mechanical theory given by N D0 branes [24] (see also [25]). This description is not the

same as the one we get by taking the naive DLCQ of the gravity theory. For example,

the scattering amplitude of three gravitons to three gravitons in the naive supergravity

approximation gives a different answer than in the matrix model [20]. In fact, when one

defines the DLCQ limit carefully, as a limit of the theory on a very small spatial circle,

one finds that the correct answer is given by the D0 matrix quantum mechanics and not

by supergravity [26].3

Fortunately, not all is lost. Of course, what we really want to do is to put N units of

momentum on this space. When N is small, the dynamics cannot be computed in terms

of particles moving in the metric (3.1), for reasons we have explained. Notice that this

is true even when the radius of AdS is large. In fact, the correct description of N units

of momentum in the DLCQ of type IIB string theory in flat space is in terms of the field

theory that lives on N M2 branes on T 2 [27].

However, if we put a large amount of momentum, then the backreaction implies that

the size of x− will be non-zero in some regions and we will be able to trust the metric. More

concretely, we can consider the black three brane metric describing a finite temperature

3Of course, the BFSS conjecture [25] is the idea that a suitable large N limit allows one to recover the

results with no compactification of the light like circle.
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system

ds2 =
1

1 − r40
r4

dr2

r2
+ r2

[

−dx+dx− +
r40
4r4

(

λ−1dx+ + λdx−
)2

+ d~x 2

]

. (3.2)

This is simply a boosted version of the ordinary black brane metric, in the near-horizon

region. We can compute the density of −P−, which we interpret as the “particle density”,

and the energy density. We obtain (see appendix C.2)

N

V2
=

r−(−P−)

V2
=

R3
AdS

G5
N

(r−)2λ2r40
8

,
H

V2
=

(−P+)

V2
=

R3
AdS

G5
N

r40
16
r− , (3.3)

where V2 is the volume of the two spatial dimensions.

We can see that by tuning λ and r0 we get different values of particle density as well as

energy density. We can also write this in terms of the temperature and chemical potential

of the non-relativistic system

1

T
=

πλ

r0
,

µN
T

=
π

r0r−λ
. (3.4)

The entropy is given by

S =
R3

AdS

4G5
N

λ(2πr−)
r30
2
V2 . (3.5)

and these thermodynamic quantities satisfy the first law

δH = TδS − µNδN . (3.6)

The physical value of the radius of the x− circle is

R−
phys

ls
=

RAdS

ls

r0
r

λr−r0
2

, (3.7)

therefore we can trust the gravity description as long as
R−

phys

ls
≫ 1. When it becomes

smaller than one we might be able to do a T-duality and use an alternative description

also. Notice that this size becomes small as we approach the boundary of AdS, r → ∞.

Thus, we cannot trust the metric near the boundary. It might be possible that after

performing suitable U-dualities we might find a metric we can trust.

Of course this solution implies that the thermodynamic properties can be simply ex-

tracted from the thermodynamic properties of the ordinary black D3 brane. We are only

looking at the same system in light cone gauge, so we just need to translate all quantities

to light cone gauge.

3.2 DLCQ of AdS5 with a plane wave boundary: harmonic potential

In this subsection we consider the gravity dual of the field theory with plane wave boundary

conditions, so that it is the gravity dual to the field theory on the plane wave. Since the

plane wave metric is conformal to flat space the metric is simply AdS, which can be sliced

in a way that make the plane wave at the boundary more manifest. One way to find the

– 8 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
2

slicing is to start with R × S3 and take the Penrose limit for a particle moving with large

angular momentum in one of the angles of S3. Namely, we write the AdS metric in global

coordinates,

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2ds2(S3) , (3.8)

which has R × S3 as a boundary. Here ds2(S3) = dθ2 + cos2 θdϕ2 + sin2 θdψ2. We then

define

x+ = t ,
x−

2R2
= t− ϕ , θ =

ρ

R
, r = Ry (3.9)

and we take the R→ ∞ limit, keeping x± and ρ, y fixed. We find the metric

ds2 =
dy2

y2
+ y2

(

−dx+dx− − ρ2(dx+)2 + dρ2 + ρ2dψ2
)

− (dx+)2 . (3.10)

Notice that it is not necessary to take this limit to obtain (3.10), and we can also obtain

it directly by writing AdS space in the appropriate coordinates4 (see also [3]). Explicitly,

after the further change of coordinates

sinh r = ρy , z = ρ2 +
1

y2
, (3.11)

the metric (3.10) becomes

ds2 = sinh2 r dψ2 + dr2 + cosh2 r

[

−
(

dx+ +
dx−

2z

)2

+
(dx−)2 + dz2

4z2

]

. (3.12)

This is AdS5 sliced by AdS3, which is the metric in square brackets. However, obtaining

the metric (3.10) as a limit will be useful later. The metric in (3.10) cannot be trusted if

x− is compact, since x− is a null direction.

We would now like to add some x− momentum and also raise the temperature of the

system so that we have a black hole in a space which is asymptotic to (3.10). We obtain

this black hole by starting with the five-dimensional Kerr-AdS black hole [28] (see also [29])

and performing a limit similar to the limit we performed above (3.9). We describe this in

detail in appendix B. The final metric can be written as

ds2 =
(r2 + sin2 θ)dr2

(1 + r2)2 − 2m
− (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θdx+dx− (3.13)

+
(r2 + sin2 θ)dθ2

cos2 θ
+ r2 sin2 θdψ2 +m

(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)
.

This metric depends only on one non-trivial parameter m. The parameter λ can be ab-

sorbed into the redefinition of x− but it is convenient to keep it because it represents the

amount of boost one performs when we take the limit. We can bring this metric to a form

which asymptotes to (3.10) via the coordinate change:

λ−1y2 = (r2 + 1) cos2 θ ,

ρ2y2 = r2 sin2 θ . (3.14)

4In fact, (3.10) can be transformed into the metric recently discussed in [4] (cf. equation (35) in that

reference) by an obvious change of coordinates.
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This is analogous to the coordinate change employed in [28] to display the AdS asymptotics

of the Kerr-AdS black hole. The result does not have a simple analytic form. As an

expansion in the new radial variable y, it is given by

ds2 =

(

1 − 2m

(1 + λρ2)2
λ2

y4

)−1
dy2

y2
+ y2

(

−dx+dx− − ρ2(dx+)2 + dρ2 + ρ2dψ2
)

− (dx+)2 +
λm

y2

(

(1 + 2λρ2)dx+ + λdx−
)2

2(1 + λρ2)3
+ O(y−4) (3.15)

where we kept only terms of order lower than O(y−4) with respect to the m = 0 solution.

The P− and P+ can be calculated by starting from the expressions for the energy

and the angular momentum in [29] (also see [30]) and taking the appropriate limit, see

appendix B. We find

H = −P+ =
R3

AdS

G5
N

(2πr−)λ
(1 + r2H)2

16
, (3.16)

N = −P−r
− =

R3
AdS

G5
N

(2πr−)r−λ2 (1 + r2H)2

32
. (3.17)

Recall that the Hamiltonian here is the oscillator Hamiltonian Hosc.

The horizon radius rH is given by the solution of (r2H + 1)2 − 2m = 0. As rH → 0

the metric becomes singular. For rH = 0 (or 2m = 1) the energy and particle densities

from (3.16), (3.17) are non-zero. For smaller densities or energies this black hole would not

be a good description. However, for m = 0 the metric (3.13) does go to the plane wave

metric (3.10).5

The Killing vector degenerating at the horizon is

∂+ +
1

λ

r2H − 1

r2H + 1
∂− . (3.18)

Then the temperature and the chemical potential are

T =
rH
π
, µN =

1

r−λ

r2H − 1

r2H + 1
. (3.19)

The entropy of the system is

S =
R3

AdS

4G5
N

(2πr−)
π

2
λrH(r2H + 1) , (3.20)

and one can check again the first law

δH = TδS − µNδN (3.21)

is satisfied, as it should be. We can also compute the size of the circle x− at the horizon

which is
R−

phys

lp
=
RAdS

lp
r−λ

(r2H + 1) cos2 θ

2
√

r2H + sin2 θ
. (3.22)

5This is reminiscent to what happens for the BTZ black hole.
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This becomes zero when cos θ → 0. In fact, the circle x− shrinks at θ = π/2 at any value

of r as is evident from (3.15). In the coordinates ρ, y introduced in (3.14) these points

correspond to the limit y → 0, ρ → ∞. Since we do not have a large contribution to the

thermodynamic quantities from this region we assume that we can ignore this part of the

metric.

3.3 DLCQ of AdS5 with a plane wave boundary: magnetic field

Here we briefly discuss the gravity dual of the field theory with plane wave boundary

conditions in the coordinates (2.7) which lead to a non relativistic particle in a magnetic

field when we fix p−. The Hamiltonian of this system is obtained shifting the oscillator

Hamiltonian with the angular momentum on the plane, as in 2.8. The metric is obtained

by performing a limit similar to the one discussed in the previous subsection, starting with

the two-parameter Kerr-AdS black hole [28]. This is discussed in appendix B.2 and here

we present the final result

ds2 =

(

1 − 2mλ4

y4
+

2mλ6

y6

)−1
dy2

y2
+ y2

[

− dx+(dx− − 2ρ2dψ̂) + (dρ2 + ρ2dψ̂2)

]

(3.23)

− (dx+)2 +
mλ6

2y2

[

dx− +
dx+

λ2
− 2ρ2dψ̂

]2

.

The temperature and the chemical potential are given by

T =
1

2π

2y2
H − 3λ2

λ
√

y2
H − λ2

, µN =
y2
H − 2λ2

r−y2
Hλ

2
, (3.24)

and the entropy is

S =
R3

AdS

4G5
N

(2πr−)V2
1

2

y4
Hλ

√

y2
H − λ2

, (3.25)

where the horizon is at y = yH with

1 − 2mλ4

y4
H

+
2mλ4

y6
H

= 0 . (3.26)

The P± densities are constant (see appendix B.2), thus the charges are infinite on the ~x

plane, and proportional to the volume V2, as is in the case of the translation invariant

black three brane metric. In fact, after Kaluza-Klein reducing along x− we see that we get

a translation invariant metric with a constant Kaluza-Klein magnetic field. The particle

number and energy per unit volume are given by

N

V2
=

R3
AdS

4G5
N

r−mλ6 ,
H

V2
=

R3
AdS

4G5
N

r−
mλ4

2
, (3.27)

respectively. Recall that the Hamiltonian here is given by Hmag = Hosc − J . This implies

that we can view this system as the system on with the Harmonic oscillator hamiltonian

but at a critical value of the chemical potential for the spin in the transverse plane. One

could find a metric interpolating between (3.13) and (3.23) by adding a general chemical

potential for the spin. Such metrics should correspond to more general limits of the rotating

Kerr black hole [28].
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3.4 DLCQ of AdS7 with a plane wave boundary

In this subsection we repeat the previous discussion for the AdS7 case. We write the S5 as

ds2(S5) = dθ2 + cos2 θdϕ2 + sin2 θdΩ2
3. We now start with AdS7 in coordinates where the

boundary is R × S5. After performing the rescaling (3.9) we get a metric similar to (3.10)

except that dψ2 → dΩ2
3. Starting from the seven dimensional Kerr-AdS black hole and

performing the same limit (3.9) we get a metric very similar to (3.13) except for m→ m/r2

and dψ2 → dΩ2
3,

ds2 =
(r2 + sin2 θ)dr2

(1 + r2)2 − 2m
r2

− (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θdx+dx− (3.28)

+
(r2 + sin2 θ)dθ2

cos2 θ
+ r2 sin2 θdΩ2

3 +
m

r2
(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)
.

We can also compute the entropy as a function of the temperature and the chemical

potential. The expressions for the temperature and chemical potential are

T =
1

2π

(

3rH +
1

rH

)

, µN =
1

r−λ

r2H − 1

r2H + 1
, (3.29)

where now the horizon radius obeys the equation (r2H + 1)2 − 2m/r2H = 0. The values of

the energy and the momentum can be uniquely fixed by first noting that E ∝ λm and

N ∝ λ2m from the asymptotic form of the metric, and second by demanding that the first

law is satisfied. We obtain

H = −P+ =
R5

AdS

G7
N

(2πr−)λ
π

16
r2H(1 + r2H)2 , (3.30)

N = −P−r
− =

R5
AdS

G7
N

(2πr−)r−λ2 π

64
r2H(1 + r2H)2 . (3.31)

The entropy is

S =
R5

AdS

4G7
N

(2πr−)λ
π2

4
r3H(1 + r2H) . (3.32)

In this case we see that as rH → 0 the energy and the particle number both go to zero.

On the other hand, we see that the temperature in (3.29) has a minimum. This suggests

that the thermal ensemble will display a phase transition similar to the Hawking-Page we

see when we treat AdS in global coordinates [31, 32]. In fact, for a given temperature

and chemical potential there is another solution which is simply thermal AdS space with

a gas of particles (we can only trust this last solution if we take x− to be non-compact).

Comparing their free energies we find a phase transition at rH = 1. Of course, the black

hole is the stable solution for rH > 1. We can evaluate this quantities in the particular

case of AdS7 × S4 background of M theory. In that case we find that

R5
AdS

4G7
N

=
R5

AdSR
4
S4VS4

4G11
N

=
4k3

3π2
,

RAdS

lp
= 2

RS4

lp
= 2(πk)1/3 , (3.33)

where G11
N = 16π7l9p and k is the number of M5 branes. As in the five-dimensional case,

the x− circle shrinks when θ = π/2. For moderate temperatures, with rH of order one, we
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can trust the M-theory background near the horizon in the regime k ≫ 1 and N3/k7 ≫ 1.

By reducing to type IIA we can extend the region of validity of the above formulas to

k ≫ 1, N/k ≫ 1. The existence of the IIA string theory dual suggests that this conformal

quantum mechanics theory has an interesting ’t Hooft limit.

These quantities should describe the thermodynamic properties of the conformal ma-

trix quantum mechanics described in [8] and reviewed in section 2.2. That quantum me-

chanics theory is characterized by only two discrete parameters k and N . Here k is the

number of fivebranes and N is the amount of momentum. When we consider the Hamilto-

nian Hosc = 1
2(H+C) we expect that the temperature would also be a non-trivial parameter

since there is an energy gap of order one that is given by the confining potential. In the

above metric the temperature translates directly into rH . Finally, we see that the combi-

nation r−λ, at fixed temperature, fixes the chemical potential for the light cone momentum

N . Thus the metrics we have depend on the right number of parameters. Here r− is a

trivial parameter and can be set to one without loss of generality.

3.5 DLCQ of the dipole theory and its gravity dual

In this section we describe in more detail a particular example of the dipole theories in-

troduced in [10, 22, 23]. As we explained above these theories are based on the non-

commutative ∗ product in (2.9). As a particular example we can consider starting with

N = 4 super Yang Mills in 3+1 dimensions. This theory has an SO(6) R symmetry that

rotates six scalars, φi, and their fermionic partners. We can consider the particular U(1)

symmetry that rotates all pairs of scalars. Defining Wj = φj + iφj+3, j = 1, 2, 3, the

symmetry acts by Wj → eiαWj . Planar diagrams in non-commutative theories are par-

ticularly simple. The only difference between the planar diagrams in the ordinary theory

and the theory with the star product is an overall phase depending only on the external

particles [12] (see also [33]). Thus, if we consider a quantity such as the free energy, which

does not involve any external particles, then the final result is the same as in the ordinary

theory.

The gravity duals of such theories are easy to construct. We simply need to do a

particular transformation on the gravity solution. This transformation has the following

origin. In the original solution we have two commuting isometry directions, x− and an

angle ϕ that is conjugate to the charge Q we defined above. If we naively imagine doing

a dimensional reduction of the ten dimensional gravity theory on these two dimensions we

get a theory in eight dimensions that has an SL(2,R) symmetry. This SL(2,R) symmetry

is a symmetry in the eight dimensional gravity theory but it is not a symmetry of the ten

dimensional configuration. In fact, it maps ordinary solutions into the solutions we want.

This transformation is the following simple set of steps. We first do a T-duality in the

direction ϕ to a T-dual direction ϕ̃. We then do a shift of coordinates x− → x− + σϕ̃.

Finally, we do a T-duality again on ϕ̃ into ϕ. The step where we did a shift of x− is not

a symmetry of the theory since ϕ̃ is periodic but x− is not. Nevertheless this operation

generates a new solution which is another solution of the gravity equations which is not

equivalent via legal U-dualities to the original one. This procedure was applied in [11]

to obtain the corresponding gravity solutions. We perform these steps more explicitly in
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appendix C. We start with AdS5 × S5, where the AdS5 metric is written as in (3.1). The

final type IIB background that we obtain through this procedure is

ds2 = −σ2r4(dx+)2 + r2
[

−dx+dx− + d~x 2
]

+
dr2

r2
+ ds2(CP

2) + η2,

BNS = σr2dx+ ∧ η , (3.34)

and the rest of the fields have the same form as they had before we applied the transfor-

mation. Here η = dφ+P is the one-form present in any Sasaki-Einstein manifold, which is

dual to the Reeb vector field ∂/∂φ. In the case of S5, this generates simultaneous rotation

of the scalars as discussed above. Indeed, in (3.34) we can replace the CP
2 space with any

local Kähler-Einstein space BKE, so that

ds2(Y ) = ds2(BKE) + η2 (3.35)

is a Sasaki-Einstein metric on Y , where dη/2 = ω is the Kähler two-form on BKE. These

backgrounds do not preserve any supersymmetry. See appendix E.

The five-dimensional part of this metric has the same form as the ones considered

in [1, 2]. These metrics have the feature that they break the symmetries to the Schrödinger

symmetry even before compactifying the direction x−. However, if we do not compactify

the direction x− we have a theory with continuous eigenvalues for P− so that there is

no sense in which we have a non-relativistic system. On the other hand, if we do not

compactify x− we can definitely trust the metric (3.34), at least for values of r that are

not too large.

However, we wanted to perform the DLCQ of this theory. When we compactify x− we

find that we can no longer trust computations in the metric (3.34). As before, we could

consider a configurations with finite P−. A simple case arises when we consider a finite

temperature configuration. We can obtain the corresponding metric if we start with the

black brane solution (3.2) and perform the TsT transformation that lead to (3.34). The

final metric in the Einstein frame is (see appendix C for details)

ds2 = e
3
2Φr2

[(

−1 +
r40
2r4

)

dx+dx− +
r40
4r4

(

λ2(dx−)2 + λ−2(dx+)2
)

−σ2r2
(

1 − r40
r4

)

(dx+)2
]

+ e−
Φ
2 r2

[

1

r4 − r40
dr2 + d~x2

]

+ e−
Φ
2 ds2(BKE) + e

3
2Φη2 (3.36)

with dilaton and B-field given by

e−2Φ = 1 + σ2λ2 r
4
0

r2
,

BNS = σ
r2

2
e2Φ

[(

2 − r40
r4

)

dx+ − r40λ
2 dx−

]

∧ η , (3.37)

where σ is the parameter used in the shift, x− → x−+σϕ̃. By construction, the solution has

the desired asymptotic form at infinity as r → ∞. However, there is now a horizon at some
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finite value of the coordinate r, inherited from the asymptotically-AdS black three-brane

metric (3.2).

We can now compute the energy and momentum of this solution, as well as its entropy.

All these results are independent of σ, which is related to the non-commutativity param-

eter. In fact we simply get the results in (3.3), (3.4), (3.5). The reason is that the TsT

transformation is a symmetry of the eight dimensional gravity theory and this eight dimen-

sional theory is all that we are using for computing these quantities.6 See appendix C.2 for

a more detailed explanation. As explained in the beginning of this subsection, this is due

in the field theory language to the fact that the planar diagrams are the same in the two

theories. Of course, it is not a symmetry of the full theory, so we expect that at order 1/k2

the two theories would yield different answers, where k is the rank of the gauge group.

4. Consistent truncations

In this section we construct two different consistent truncations of type IIB supergrav-

ity with massive vector fields. As we will see, one of them admits the black hole back-

ground (3.36), (3.37), among its solutions. Usually consistent truncations involve massless

vector fields. These truncations can be used to generate other solutions which have the

same symmetries as certain conformal quantum mechanical theories. We think that these

truncations are interesting in their own right and could perhaps be useful for the construc-

tion of other solutions. We have two truncations which we will discuss in turn. Both are

consistent truncations of the type IIB equations for the bosonic fields. It might be possible

that they can be supersymmetrized. We will state here the final results and leave details

to appendix D.

Before proceeding, let us recall how the backgrounds with non-relativistic conformal

symmetry

ds2(Mz) = −σ2r2z(dx+)2 +
dr2

r2
+ r2

(

−dx+dx− + d~x 2
)

(4.1)

arise from AdS gravity with a massive gauge field. This metric is a deformation of the

AdSd+3 metric and clearly is only invariant under a subgroup of SO(d + 2, 2), which for

generic values of z is the non-relativistic dilatation group, enhanced to the Schrödinger

group for z = 2. See appendix A. These metrics are solutions to the equations of motion

derived from the action [1, 2]

S =

∫

dd+2xdr
√−g

(

R− 2Λ − 1

4
FµνF

µν − m2

2
AµA

µ

)

. (4.2)

In particular, the ansatz A+ ∝ rz solves the equations of motion, provided

Λ = −1

2
(d+ 1)(d+ 2) , m2 = z(z + d) . (4.3)

In the following subsections we will describe consistent truncations of type IIB supergravity,

containing the action (4.2), where d = 2, and z = 2, 4 respectively.

6We are also using the fact that the TsT transformation leaves invariant the eight dimensional Kaluza-

Klein gauge fields associated to the two charges.
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4.1 Non-linear Kaluza-Klein reduction with m2 = 8

The ansatz we consider here is suggested by the observation that in any background of the

type AdS5 × Y , where Y is a Sasaki-Einstein manifold, there exist certain Kaluza-Klein

vector fields with mass squared precisely m2 = 8. These arise from standard Kaluza-Klein

reduction of the NS B field and the RR C2 field along the one-form η = dφ+P that exists

on Y [34].

We then consider type IIB supergravity where only the metric, the dilaton Φ, the five-

form field F5 and the NSNS three-form H = dB are non-trivial. The equations of motion

in the Einstein frame are7

RMN =
1

2
∂MΦ∂NΦ +

1

96
FMABCDFN

ABCD

+
1

4
e−Φ

(

HMABHN
AB − 1

12
gMNHABCH

ABC

)

, (4.4)

�10Φ = − 1

12
e−ΦHABCH

ABC ,

d(e−Φ⋆H) = 0 ,

F5 = ⋆F5, dF5 = 0 , H ∧ F5 = 0 , (4.5)

where �10 = ∇M∂M . The final equation arises from the equation of motion of the RR

3-form, which has been set to zero. Our ansatz is

ds210 = e−
2
3
(4U+V )ds2(M) + e2Uds2(BKE) + e2V η2 ,

B = A ∧ η + θ ω ,

F5 = (1 + ⋆)G5 where G5 = 4e−4U−V vol(M) , (4.6)

where ds2(BKE) + η2 is a Sasaki-Einstein metric. Here, ds2(M) is the Lorentzian metric

of the five-dimensional part M and vol(M) denotes its volume form. We use indices xa

(a = 0, . . . , 4) to denote the directions along M and xi (i = 1, . . . , 4) for those along BKE.

U , V , θ and Φ are scalar functions, and A is a one-form on M , respectively. The warp

factor in front of ds2(M) is inserted to obtain the reduced equations in the five-dimensional

Einstein frame. This ansatz is closely related to the one used in [35], where they had scalars

U , V , θ and Φ, but not the gauge field A. They also had non-trivial RR 2-form, which we

do not have.

Our choices for A and F5 satisfy the equations (4.5) automatically. Then defining

F = dA, the field strength H = dB of the two-form B reads

H = F ∧ η − (2A− dθ) ∧ ω . (4.7)

The gauge transformation of the B-field B → B+d(χ∧ω) with a function χ on M induces

the five dimensional gauge transformation

A → A+ dχ , θ → θ − 2χ , (4.8)

7We use capital Roman letters for the ten-dimensional indices.
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which shows that θ is the Stückelberg field giving mass to the gauge field A. We choose

the gauge θ = 0 for simplicity.

The equations of motion (4.5) follow from the Type IIB action

S =
1

2

∫

d10x
√−g

[

R− 1

2
∂AΦ∂AΦ

− 1

2 · 3!e
−ΦHABCH

ABC − 1

2 · 5!G(5)ABCDEG(5)
ABCDE

]

(4.9)

by varying gMN , B and Φ. Inserting the ansatz (4.6) in (4.9) and integrating over the

internal directions, we obtain the five-dimensional action

S =
1

2

∫

d5x
√−g

[

R+ 24e−u−4v − 4e−6u−4v − 8e−10v − 5∂au∂
au− 15

2
∂av∂

av (4.10)

−1

2
∂aΦ∂

aΦ − 1

4
e−Φ+4u+vFabF

ab − 4e−Φ−2u−3vAaA
a

]

,

where we defined u = 2
5 (U−V ) and v = 4

15 (4U+V ) to diagonalize the kinetic terms for the

scalars. The five-dimensional equations of motion which follow from the action above are

Rab = − 1

3
(24e−u−4v − 4e−6u−4v − 8e−10v)gab

+
1

2
∂aΦ∂bΦ + 5∂au∂bu+

15

2
∂av∂bv

+
1

2
e−Φ+4u+v

(

FacF
c
b −

1

6
gabFcdF

cd

)

+ 4gabe
−Φ−2u−3vAcA

c,

d(e−Φ+4u+v⋆5F ) = −8e−Φ−2u−3v ⋆5 A,

�5Φ = − 1

4
e−Φ+4u+vFabF

ab − 4e−Φ−2u−3vAaA
a,

10�5u =24(e−u−4v − e−6u−4v)

+ e−Φ+4u+vFabF
ab − 8e−Φ−2u−3vAaA

a,

15�5v =16(6e−u−4v − e−6u−4v − 5e−10v)

+
1

4
e−Φ+4u+vFabF

ab − 12e−Φ−2u−3vAaA
a (4.11)

where �5 = ∇a∂a is the five-dimensional d’Alembertian.

Interestingly, this non-linear Kaluza-Klein reduction is consistent: any solution to the

five-dimensional equations of motion (4.11) can be lifted to a solution of the ten-dimensional

equations of motion of type IIB supergravity, using the ansatz (4.6). The details can be

found in appendix D.1. The masses of the excitations around the AdS5 background are

m2
A = 8 , m2

Φ = 0 , m2
u = 12 , and m2

v = 32 . (4.12)

Notice that one can write a “superpotential” (in the Hamilton-Jacobi sense) for the scalar

fields u, v [35]. This may be useful for studying holographic renormalisation of the system,

see e.g. [36 – 39].
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Background with z = 2. As promised, we can now see that a particular solution to

the equations of motion (4.11) is obtained by setting Φ = u = v = 0, taking (4.1) with

z = 2 as metric on M and the gauge field to be

A = σr2dx+ . (4.13)

Indeed, setting to zero the scalar fields, the action (4.10) reduces to the action (4.2) dis-

cussed in [1, 2]. We then recover in a different way the solution (3.34) previously obtained

via the TsT transformation. As already mentioned, this solution does not preserve any

supersymmetry. The derivation of this is relegated to appendix E.

In fact, it can be checked that also the black hole background (3.36), (3.37) arises as

a solution to the equations of motion (4.11), with non trivial dilaton and scalar fields u, v.

This provides an explicit check that this is indeed a solution of type IIB supergravity. There

may be other interesting solutions to the equations (4.11), with non-relativistic symmetry

or otherwise. We leave a more complete analysis for future work.

4.2 Non-linear Kaluza-Klein reduction with m2 = 24

Following the logic of section 4.1, it is natural to consider other special Kaluza-Klein

modes on Y , that could be promoted to full non-linear consistent reductions. After having

considered two-form modes, we should look at Kaluza-Klein modes coming from the RR

four-form potential, as well as the metric. In fact, it is well known that these modes mix

and come in pairs [40] with mass eigenvalues

m2
± = µ+ 4 ± 4

√

µ+ 1 , (4.14)

where µ is the eigenvalue of the Laplacian on the massive three-form ω3 in Y on which

the RR potential is reduced, that is C4 = A ∧ ω3. For any Killing vector field in Y ,

there exists a mode with eigenvalue µ = 8 [34, 41]. Thus, for each Killing vector, one

obtains a massless mode as expected, but also a massive mode, with mass m2
+ = 24. It

has been shown [42, 43] that the massless KK mode associated to the Reeb Killing vector

may be promoted to a non-linear truncation, yielding minimal gauged supergravity. In the

following, we will demonstrate that in fact it is possible to include in the truncation also

the massive gauge field, at least at the level of bosonic fields.

We then consider a background with only the metric and the five-form field non-trivial,

with the following ansatz:

ds2 = e−
2
3
(4U+V )ds2(M) + e2Uds2(BKE) + e2V (η + A)2 , (4.15)

F5 = (1 + ⋆10)
[

2ω2 ∧ (η + A) + 2ω2 ∧ A− ω ∧ (η + A) ∧ F
]

. (4.16)

Here we gauged the Reeb isometry direction η by a connection one-form A on M , and

we will denote its curvature by F = dA. The ansatz for F5, which has one-form A and

two-form F on M , requires some explanation. The 2ω2∧η term is chosen to have
∫

Y F5 = 4

which is the value for the AdS5 × Y background. The structure 2ω2 ∧ A − ω ∧ η ∧ F is

suggested by the discussion above that we should take C4 ∼ ω ∧ η ∧ A, therefore the

combination

d(ω ∧ η ∧A) = 2ω2 ∧ A− ω ∧ η ∧ F (4.17)
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with F = dA should be in the expansion of F5. The ansatz is then made gauge-invariant

by the replacement η → η + A, which imposes

F = F + F (4.18)

from the ω2 component of the closure of F5. This ansatz gives again a consistent reduction,

which is an extension of the consistent reduction to the (bosonic sector of the) minimal

gauged supergravity [42, 43]. The details of the calculation are explained in appendix D.2.

Here we only discuss the equations of motion of the vector fields A and A, one of which

comes from the ω component of dF5 = 0,

d(e−
4
3
(U+V ) ⋆5 F) = −8e−8U ⋆5 A + F ∧ F . (4.19)

In addition, the 10d Einstein equation in (4.5), with (A,B) = (a, φ) gives the relation

d(e
8
3
(U+V ) ⋆5 F) = 16e−8U ⋆5 A + F ∧ F . (4.20)

These two equations, as well as the equations for the 5d metric and the scalars, follow from

the action

S =
1

2

∫

d5x
√−g

[

R+ 24e−u−4v − 4e−6u−4v − 8e−10v − 5∂au∂
au− 15

2
∂av∂

av

− 1

4
e−4u+4vFabFab − 1

2
e2u−2v

FabF
ab − 8e−4u−6vAaA

a

]

+
1

2

∫

A∧ F ∧ F , (4.21)

where u = 2
5 (U − V ) and v = 4

15(4U + V ). As we explain in appendix D.2, this is a

consistent reduction.

When u = v = 0, the kinetic term of the gauge fields can be diagonalized, with the

full action becoming

Svector =
1

2

∫

d5x
√−g

[

−3

4
(F +

2

3
F)ab(F +

2

3
F)ab − 1

6
FabF

ab − 8AaA
a

]

+ SCS (4.22)

where

SCS =
1

2

∫

A ∧ (F + F) ∧ (F + F) . (4.23)

Therefore we have one massless mode A + 2
3A, which appears in the ordinary gauged

supergravity, and one massive mode A with m2
A

= 24.

Background with z = 4. As an example, let us construct a simple solution to the

equations of motion which follow from (4.21). We can set u = v = 0 consistently if

|A|2 = |F|2 = |F|2 = 0, then we can choose A = −3
2A to set the massless gauge field to

be zero. The action then becomes (4.2) with the null condition |A|2 = |F |2 = 0 as was

the case for the background with z = 2. Therefore one solution is obtained by taking (4.1)

with z = 4 as metric on M and

A = σ r4dx+ . (4.24)
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We then find that the following is a solutions of type IIB supergravity

ds2 = −σ2r8(dx+)2 +
dr2

r2
+ r2

(

−dx+dx− + d~x 2
)

+ds2(BKE) + (η + σr4dx+)2 , (4.25)

F5 = 4vol(M) + 2ω ∧ ω ∧ η
−σdx+ ∧

[

ωC ∧ ωC + dx1 ∧ dx2 ∧ d(r6η)
]

, (4.26)

where recall dη = 2ω and we defined

ωC =
1

2
d(r2η) , (4.27)

which is the Kähler two-form on the Calabi-Yau cone C(Y ), ds2(C(Y )) = dr2 + r2ds2(Y ).

Notice the analogy with the background (3.34). In particular, we can think of the back-

ground here as a deformation of AdS5×Y , with deformation parameter σ. However, in this

case, the solution cannot be related to an AdS background by a simple TsT transformation.

This is a background enjoying non-relativistic symmetry with exponent z = 4.

Based on the analogy with the z = 2 case, it is plausible that black hole geometries

with (4.25), (4.26) as asymptotic boundary conditions arise as solutions to the equations

with non-zero scalar fields. Since these are not accessible by simple duality transforma-

tions, it would be interesting to try to find such black hole solutions, which should be dual

to non-relativistic systems with z = 4. It would also be nice to understand the field theory

duals of these solutions. Moreover, it is possible that many more solutions could be found,

with completely different applications.

5. Conclusions

In this paper we have considered some conformal quantum mechanical systems that arise

by performing the DLCQ of conformal field theories. We have considered several aspects

of the gravitational geometries that arise via this procedure. We have emphasized that we

cannot trust the gravity solutions that we get by performing the DLCQ of AdS space. The

correct DLCQ description is usually more involved. Fortunately, in cases with sufficiently

high light cone momentum N , or high momentum density, we can trust the geometry at

least in some region. Situations were the metric can only be trusted in some region of the

geometry are common. For example, in the gravity dual of D0 brane quantum mechanics

the geometry can be trusted only in certain regions, see [44].8 In particular, this allows to

compute certain correlation functions, as long as the length scales at which we compute

them lie in the region where the computation is dominated by the gravity result. On the

other hand, if N is small we cannot trust results computed on the AdS metric with x−

identified. Of course, if the modes we consider are BPS, it is possible that we get the right

answer even if we do the naive computation.

We considered thermal configurations and we concluded that we can trust the geome-

tries near the horizon if the momentum density is large enough. In this way we computed

8In this case the gravity results were compared with numerical simulations in [45, 46].
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the thermodynamic properties of the dual quantum mechanical theories. Thus, we conclude

that for the solutions with translationally invariant horizons, in which the hydrodynamic

regime makes sense, the transport properties will have the usual gravity values. In particu-

lar, it is simple to see that the bulk viscosity coefficient vanishes, as dictated by conformal

invariance [7, 47], and the shear viscosity has its universal value [48, 49].

We have given one concrete example of a quantum mechanical theory that we can ana-

lyze using these gravity duals. This is the conformal quantum mechanical theory describing

the DLCQ of M5 branes [8]. This is a sigma model whose target space is the moduli space

of N instantons in U(k) and it is given in terms of the ADHM construction reviewed in

section 2.2. Naively one might have expected that the quantum mechanical description

would involve a system of N particles moving in four spatial dimensions. However, the

quantum mechanical theory has 4Nk variables, but realizing the Schrödinger group in 4+1

dimensions [8]. This highlights the subtle nature of DLCQ. The thermal properties of this

theory were computed in section 3.4. For large enough k and N we can trust the gravity

computations. The black hole geometries were obtained by taking a simple limit of the

Kerr-AdS black holes [28, 29]. The quantum mechanics theory does not look particularly

similar to the fermions at unitarity, which was the initial motivation for [1, 2]. However,

it is interesting that we get some concrete conformal quantum mechanical theories that

can be studied in this fashion. Maybe this point of view might shed some light on the

mysterious connection between AdS2 and conformal quantum mechanics.

We have also observed that some of the backgrounds introduced in [1, 2] can be realized

in string theory by considering the gravity duals of the dipole non-commutative deformation

of conformal field theories [10]. In this case the gravity description with and without the

deformation are very closely related. In fact, if we consider observables with zero external

charge and momentum the results are the same as in the ordinary theory.

We have also found certain consistent Kaluza-Klein reductions of type IIB supergravity

involving massive vector fields. These reductions have also allowed us to find an embedding

for a solution with non relativistic conformal symmetry with a dynamical exponent z = 4,

which is different from the Schrödringer value, z = 2. It would be nice to find the field

theory interpretation of these solutions. These Kaluza-Klein reductions are probably useful

in their own right, independently of any applications to the backgrounds in [1, 2].
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A. Non-relativistic conformal symmetries

Let us summarise here the non-relativistic conformal groups and their embeddings to the
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relativistic counterpart [1, 2, 8]. Recall the Galilean algebra in d spatial dimensions has

the Hamiltonian H, momenta Pi, rotations Mij , Galilean boosts Ki and the mass operator

M which commutes with everything. Less obvious commutators are

[Pi,Kj ] = −iδijM , [H,Ki] = −iPi . (A.1)

This algebra can be embedded in the Poincaré algebra with d+1 spatial dimensions and one

timelike dimension. We denote its generator by putting a tilde on the symbols, thus M̃µν

are the rotations and P̃µ are the translations. The Greek indices take values 0, 1, . . . d+ 1.

The Galilean algebra is obtained by introducing the light-cone coordinates

x± = x0 ± xd+1 (A.2)

and retaining the subalgebra commuting with P̃−, which is interpreted as the mass operator

M . The identification is given by

M = −P̃− , H = −P̃+ , Pi = P̃i , Mij = M̃ij , Ki = M̃−i . (A.3)

This embedding is well-known in the context of discrete light-cone quantisation, as recalled

in the main text.

The Galilean algebra may be extended to the non-relativistic conformal group, by

including a dilatation generator D, whose non-zero commutators are

[D,Pi] = −iPi , [D,H] = −izH ,

[D,Ki] = i(z − 1)Ki , [D,M ] = i(z − 2)M . (A.4)

The constant z is referred to as the “dynamical exponent” in the condensed matter liter-

ature, and reflects the freedom to scale differently time and space coordinates [2]. In the

special case that z = 2, there exists a further extension of the group, obtained by adding

a special conformal transformation with generator C. The new non-zero commutators are

then given by

[C,Pi] = iKi , [D,C] = 2iC , [H,C] = iD , (A.5)

and the resulting group is called the Schrödinger group. Notice that this contains an

SL(2,R) subgroup generated by H,D,C. This can be conveniently presented in terms of

an “oscillator Hamiltonian” Hosc = L0 = 1
2(H + C) and the raising/lowering operators

L± = 1
2(H − C ∓ iD) [50].

The Schrödinger algebra is obtained, just as in the case of the Galilean algebra, as the

sub-algebra of generators commuting with P̃−. One identifies the generators as follows:

D = D̃ +B , C = −K̃− . (A.6)

where D̃ and K̃µ are the dilatation and special conformal transformations of the relativistic

conformal group. B = 2M̃−+ is the generator of the boost normalised so that x± has

eigenvalue ±1. For z 6= 2, the non-relativistic dilatation is realized as the combination

D = D̃ + (z − 1)B (A.7)

in the relativistic conformal algebra.
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B. Black holes with plane wave asymptotics

B.1 Harmonic potential metric

We start with the one-parameter five dimensional Kerr-AdS metric originally found in [28],

and write this in the form presented in [29]. Namely, the metric is

ds2 = − ∆r

r2 + a2 sin2 θ

(

dt− a

Ξ
cos2 θdφ

)2

+
r2 + a2 sin2 θ

∆r
dr2 + (B.1)

+
r2 + a2 sin2 θ

∆θ
dθ2 +

∆θ cos2 θ

r2 + a2 sin2 θ

(

adt− r2 + a2

Ξ
dφ

)2

+ r2 sin2 θdψ2 .

where

∆r = (r2 + a2)(1 + r2) − 2m, ∆θ = 1 − a2 sin2 θ, Ξ = 1 − a2. (B.2)

Note that our θ is their π/2− θ, i.e. sin θ and cos θ are flipped with respect to theirs. This

metric has Jφ 6= 0, Jψ = 0. We need to have |a| < 1 to have space-like θ direction. The

energy and the angular momenta are [29] (with R3
AdS/G

5
N = 1)

E =
πm(3 − a2)

4(1 − a2)2
, Jφ =

πma

4(1 − a2)
, Jψ = 0 . (B.3)

This metric is asymptotically AdS5, but in the coordinate system above the boundary

is a rotating Einstein universe. To display the R × S3 boundary, we need the coordinate

change [28]

(1 − a2)r̂2 cos2 θ̂ = (r2 + a2) cos2 θ, r̂2 sin2 θ̂ = r2 sin2 θ , φ̂ = φ+ at . (B.4)

Then the asymptotic form becomes

ds2 = −(1 + r̂2)dt2 +
dr̂2

1 + r̂2 − 2m
∆

θ̂

+ r̂2
(

dθ̂2 + cos2 θ̂dφ̂2 + sin2 θ̂dψ̂2
)

+
2m

r̂2(1 − a2 sin2 θ̂)3
(dt− a cos2 θ̂dφ̂)2 + · · · . (B.5)

The boundary stress-energy tensor in this coordinate system is calculated in [30].

Since we want to obtain the asymptotic plane wave metric from the R×S3 metric, we

perform the limit (3.9). Namely, we define

t = x+ , t− φ̂ =
x−

2R2
, θ̂ =

ρ

R
, r̂ = Ry . (B.6)

and let R→ ∞, keeping x± , ρ and y fixed. We also need to scale E and J accordingly. The

energy is conjugate to t translations and the angular momentum J to φ̂ translations. The

coordinate change (B.6) implies that −P+ = E − J and −P− = J
2R2 . However, in addition

we need to take into account that when we compactify x− we are effectively shrinking the

φ̂ circle from radius one to radius r−/(2R2). This rescales the energy and the angular
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momentum since the configuration is translation invariant along φ̂. The final expressions

are

−P+ =
r−

2R2
(E − J) , − P− =

r−

2R2

J

2R2
. (B.7)

We see from (B.3) that in order to get a finite limit we need to take a → 1. Thus we end

up doing the scalings

t = x+ , φ = − x−

2R2
+ (1 − a)x+ , 1 − a =

1

2λR2
, R→ ∞ (B.8)

and r and θ are not scaled. Asymptotically, they are related to the scaled variables ρ and

y by

λ−1y2 = (r2 + 1) cos2 θ , y2ρ2 = r2 sin2 θ. (B.9)

The limiting metric was given in (3.13). We can see that the λ dependence can be removed

by rescaling x−, but it is convenient to keep λ for some purposes. We can compute P± by

taking the limits of (B.7). We find

−P− = πλ2r−
m

8
, − P+ = πλr−

m

4
, (B.10)

which lead to (3.17).

We have not found a simple analytic form of the metric above in the asymptotically

plane wave coordinates, but for large y we can expand it as in (3.15). The boundary

stress-energy tensor is then given by Tab = λm
(1+λρ2)3

Sab where

S++ = 1 + 3λρ2 + 3λ2ρ4 , S+− =
λ(1 + 3λρ2)

2
, S−− = λ2 ,

Sρρ = λ(1 + λρ2 ), Sψψ = ρ2Sρρ , (B.11)

which is traceless, as it should be.

In order to obtain the metric for the case of the black hole in AdS7 we simply need

to start from the general rotating black holes in seven dimension as written in [29] (see

also [51]). The metrics are very similar up to the replacement m→ m/r2 and dψ2 → dΩ2
3.

The scalings we need to do are precisely as in (B.8) and the resulting metric is (3.28). The

temperature has a different expression because we replaced the constant parameter m by

m/r2 which depends on r. The expressions for the temperature and chemical potential can

be found in [29] and we get (3.29) after taking the limit. Similarly, the expressions for the

energy and angular momentum that are given in [29] (with R5
AdS/G

7
N = 1)

E =
mπ2

4(1 − a2)

(

1

(1 − a2)
+

3

2

)

, J =
maπ2

4(1 − a2)2
, (B.12)

and lead to the following values for P+ and P−

−P− =
π2

16
λ2mr− , − P+ =

π2

4
λmr− . (B.13)
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B.2 Magnetic field metric

We consider here a different limit, obtained starting with the general two-parameter Kerr-

AdS metric [28]. In the limit, the two parameters become trivial, so for simplicity we

discuss the case that the two parameters are equal. We start with the metric in the form

presented in [52], and set a = b and q = 0. We also set g = 1 without loss of generality.

The metric is

ds2 = −1 + r2

1 − a2
dt2 +

2m

(r2 + a2)(1 − a2)2

[

dt− a(cos2 θdφ+ sin2 θdψ)

]2

+ (r2 + a2)

[

dr2

∆r
+

1

1 − a2

(

dθ2 + cos2 θdφ2 + sin2 θdψ2
)

]

, (B.14)

where

∆r =
(r2 + a2)2(1 + r2)

r2
− 2m . (B.15)

Note we switched the variables ψ and φ in [52], which is equivalent to the replacement

θ → π/2 − θ. Now let us introduce the following definitions

θ =
ρ

R
, t = x+, φ = x+ − x−

2R2
, a = 1 − 1

2λ2R2
, (B.16)

and then take the limit R → ∞. We then get the following result for the metric in this

limit

ds2 = (1 + r2)
dr2

∆r
+ λ2(1 + r2)

[

−dx+dx− − ρ2(dx+)2 + dρ2 + ρ2dψ2
]

− (dx+)2

+
2mλ4

(1 + r2)

[

dx−

2
+

1

2λ2
dx+ + ρ2(dx+ − dψ)

]2

, (B.17)

where

∆r =
(1 + r2)3

r2
− 2m . (B.18)

Changing the radial coordinate and the time by

y2 = λ2(r2 + 1), ψ̂ = ψ − x+ , (B.19)

we arrive at the metric

ds2 =

(

1 − 2mλ4

y4
+

2mλ6

y6

)−1
dy2

y2
+ y2

[

− dx+(dx− − 2ρ2dψ̂) + (dρ2 + ρ2dψ̂2)

]

− (dx+)2 +
mλ6

2y2

[

dx− +
dx+

λ2
− 2ρ2dψ̂

]2

, (B.20)

which is the metric (3.23) in the main text. In the large y → ∞ limit, the metric approaches

the pp-wave form (3.10). We find that the horizon is at y = yH where

1 − 2mλ4

y4
H

+
2mλ4

y6
H

= 0 . (B.21)
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which is the same as for the original Kerr-AdS black hole metric [52], before the limit.

The boundary stress-energy tensor computed in the usual way is then given by Tab =

mSab, where

S++ = λ2 , S+− = λ4/2 , S−− = 1 , S+ψ̂ = −ρ2λ4 ,

S
−ψ̂ = −2ρ2λ6 , Sρρ = λ4, Sψ̂ψ̂ = ρ2λ4(1 + 4ρ2λ2) , (B.22)

which is traceless. It is straightforward to repeat this procedure for the seven dimensional

case.

C. Black holes with Schrödinger asymptotics

The background (3.34) should be regarded as the gravity dual of the vacuum of the non-

commutative dipole conformal field theory. According to the AdS/CFT correspondence

then, several physical properties may be computed holographically from gravity duals at

finite temperature or with finite density of states. In this appendix we address a couple of

issues. First we describe how to construct a large class of explicit solutions with asymptotic

Schrödinger symmetry. Then we explain how to extract physical quantities from such kind

of solutions, with non-standard (e.g. non-AdS) asymptotics. In particular, we discuss the

issues arising in trying to define conserved charges (e.g. the analogue of ADM mass) and

we propose how to circumvent them. The key point is a certain duality transformation, to

which we now turn.

C.1 TsT transformation

It turns out that the background (3.34) may be obtained from a TsT [53] transformation of

AdS5×Y . This was discussed in [10] for the case of Y = S5 and it extends straightforwardly

to any Y .

Quite generally, the TsT transformation is a solution generating technique in the con-

text of type II supergravity. Consider a background with two isometries along coordinates

ϕ1 and ϕ2. The TsT transformation consists of three steps: firstly, we perform a T-duality

along ϕ1 and introduce the dualised direction ϕ̃1. Secondly, we make the coordinate shift

ϕ2 → ϕ2 +cϕ̃1, and thirdly we perform another T-duality along ϕ̃1. The first and the third

steps are dualities and as such do not change the physics; the second step might change

the periodicities of ϕ̃1 and ϕ2, but it is guaranteed to give a new solution at the level of

supergravity equations of motion.

Let us apply this transformation to a general type IIB solution of the form

ds2 = gabdx
adxb + ds2(B̃) + h2(dϕ+ P̃ )2 ,

F5 = 4
(

vol(M5) + vol(B̃) ∧ h(dϕ+ P̃ )
)

, (C.1)

where ϕ is a Killing direction in the five-dimensional space Y , ds2(B̃) is the metric of

the four-dimensional space transverse to ∂ϕ, h2 is the norm of ∂ϕ, and P̃ is a connection

one-form on B̃. We assume all other fields are zero.
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For our purposes, we T-dualise ϕ into ϕ̃, then shift a light-cone coordinate x− →
x− + σϕ̃, and T-dualise ϕ̃ back to ϕ. The resulting solution in the string frame is

ds2 =
[

gabdx
adxb − σ2e2(Φ−Φ0)h2ga−gb−dxadxb+

+ds2(B̃) + e2(Φ−Φ0)h2(dϕ+ P̃ )2
]

, (C.2)

F5 = 4
(

vol(M5) + vol(B̃) ∧ h(dϕ+ P̃ )
)

,

B = σe2(Φ−Φ0)h2ga−dxa ∧ (dϕ+ P̃ ) ,

e−2(Φ−Φ0) = 1 + σ2h2g−− . (C.3)

where Φ0 is the value of the dilaton before the duality.

If we start from the AdS5 × Y background, where AdS5 is written in the Poincaré

patch, and choose the isometry ϕ used to be the Reeb direction φ (or direction associated

to the U(1)R symmetry of the N = 1 dual CFT), where h2 = 1, the metric after the TsT

transformation is simply the solution (3.34). The term −r4(dx+)2, which is crucial for

breaking the relativistic conformal group to the Schrödinger group, is generated through

the term ga−gb−dxadxb. In general, the solution obtained above when ϕ is the Reeb

direction falls inside our ansatz (4.6) and as such gives a solution of the equations of

motion derived from the 5d action. Thus, we have that any solution of the 5d equations,

with vanishing scalars and gauge field, may be transformed to another solution

ds2(M) = e−
2Φ
3 gabdx

adxb − e
4
3Φσ2ga−gb−dxadxb ,

A = σe2Φga−dxa ,

e−2Φ = 1 + σ2g−− ,

U = −1

4
Φ , V =

3

4
Φ , (C.4)

as long as g−− and ga− do not depend on the coordinate x− (and we have set Φ0 = 0 for

simplicity). In particular, this is true for AdS5, as well as the asymptotically AdS5 black

hole metric. In general, applicability of the TsT transformation explained here and the

Kaluza-Klein reduction given in section 4.1 is complementary: the TsT transformation can

be used to obtain solutions with non-constant h2 but our Kaluza-Klein reduction allows

us to lift arbitrary solutions of five-dimensional equations of motion to ten-dimensional

solutions.

Notice that it is straightforward to extend the procedure described above to more

complicated black hole geometries, with asymptotic Schrödinger symmetry. For example,

one can apply the TsT transformation to the R-charged asymptotically AdS5 black holes

constructed in [42].

C.2 Conserved charges and thermodynamic properties

We will now discuss some properties of the black hole metric (3.36) derived in subsection 3.5.

This can be most simply done by first Kaluza-Klein reducing the metric along the ϕ and

x− directions to an eight dimensional solution. After this Kaluza-Klein reduction both the
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original black three brane metric (3.2) and the solution (3.36) are related by a symmetry

of the eight dimensional gravity theory. Then, it can be checked explicitly that horizon

is not affected by the TsT transformation, and in particular the Hawking temperature T ,

entropy S, and chemical potential µN , are unchanged [54]. We emphasize that it is not

a symmetry of the full theory. But since we are computing quantities just in the gravity

theory the results will be the same in both cases.

Let us next address the important issue of computing conserved charges in backgrounds

with asymptotic Schrödinger symmetry such as (3.34). For backgrounds that are asymp-

totically AdS there are several methods based on the Fefferman-Graham expansion of the

metric near the AdS boundary (see e.g. [55, 56, 36, 57]). In particular, there exist coordi-

nates such that any metric which is asymptotically AdS takes the form

ds25 =
dr2

r2
+ r2γabdx

adxb (C.5)

and γab has an expansion of the form

γab = γ
(0)
ab +

1

r2
γ

(2)
ab +

1

r4
γ

(4)
ab + h

(4)
ab

1

r4
log

1

r2
+ · · · (C.6)

Here γ
(2)
ab is determined in terms of γ

(0)
ab while γ

(4)
ab captures the leading deformation with

respect to the vacuum. The coefficient h
(4)
ab is related to the Weyl anomaly [58] and all

other terms are determined recursively in terms of these [36].

This expansion provides good control over the asymptotic behavior of the metric, al-

lowing to subtract the infinities consistently. Then one can add suitable local counterterms

and define the renormalised boundary energy-momentum tensor as

Tab = lim
ǫ→0

1

8πGN ǫ2
2√−γ

δ

δγab
(S + Sct) (C.7)

where the integrals are evaluated at a finite distance from the boundary r = 1/ǫ. Notice

this is simply

Tab = γ
(4)
ab (C.8)

in the case γ
(0)
ab = ηab (then we also have γ

(2)
ab = h

(4)
ab = 0). For example, using this method,

the energy-momentum for the non-extremal D3-brane metric (3.2) can be easily computed

and is given by

T++ =
1

2
λ−2r40 , T−− =

1

2
λ2r40 , T+− =

1

4
r40 , Tij =

1

4
r40δij . (C.9)

In general, the conserved charges associated to a Killing vector ξa are constructed as

Qξ =

∫

Σ
d3x

√
σ ξbTabu

a (C.10)

where Σ is a space-like surface with unit normal vector ua, and is σab the induced metric on

it. These are easily extracted from the usual ADM decomposition of the boundary metric,

with respect to a chosen time coordinate

ds2 = −N2
Σdt2 + σab(dx

a +Na
Σdt)(dxb +N b

Σdt) . (C.11)
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Everywhere in the paper we slice at constant x+. This is the natural choice dictated by

the embedding of the Schrödinger group into the Poincaré group. We can then compute

the (non-relativistic) energy, associated to the Killing vector ∂/∂x+

H = −P+ =

∫

Σ
d3x

√
σ(u+T++ + u−T−+) , (C.12)

and the mass (particle number), associated to the Killing vector ∂/∂x−

N

r−
= −P− =

∫

Σ
d3x

√
σ(u+T+− + u−T−−) . (C.13)

There are some obstacles to applying this program to metrics which asymptote to the

Schrödinger background9

ds2 =
dr2

r2
+ r2

(

−dx+dx− + dxidxi
)

− σ2r4(dx+)2 . (C.14)

Firstly, an analogue of the Fefferman-Graham expansion for this kind of asymptotic is

not known. In particular, recall that (C.14) is not an Einstein metric. Moreover, it is

not a priori clear how to define the boundary, since the leading term is one dimensional.

Secondly, the full solution is intrinsically ten dimensional, involving both squashing of the

internal geometry, as well as non-trivial RR and NS fields. Application of holographic

renormalisation techniques to ten dimensional geometries is not very well developed (how-

ever, see [59, 60]). We expect that the five-dimensional truncations that we derived in

this paper will be important in formulating a holographic renormalisation procedure, using

for instance the Hamilton-Jacobi approach [38, 39]. Of course the whole discussion really

makes sense only when x− is non-compact, otherwise we cannot trust the metric near the

boundary.

We leave a systematic treatment for future work and instead circumvent the problem

taking advantage of the TsT transformation.10 This transforms the original metric gab
into a new metric given by (C.2). The proper Fefferman-Graham expansion of this metric

should be such that it coincides with the corresponding expansion for the original metric.

In other words, given the new metric g̃ab in (C.2) which was in the string frame, we can

find the original metric gab as

gab = g̃ab + σ2h2 g̃−ag̃−b
(1 − h2σ2g̃−−)

(C.15)

Thus, if someone gives us the metric g̃ab, we find the metric gab and we perform the

usual Fefferman-Graham expansion (C.6), reading off the stress tensor as in (C.8). The

parameters σ and h can be read off from the other components of the metric and from the

B field.

Then it is natural to define the boundary energy-momentum tensor using γ(4) via (C.8).

Notice that indeed this prescription satisfies the first law of black hole thermodynamics,

9More generally, for any value of the exponent z in (4.1).
10The original version of this paragraph had mistakes, we thank Y. Oz and S. Yankielowicz for pointing

them out.
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which is a check that it is correct. A field theoretical argument was also given in section 3.5,

which supports our interpretation here. It would be worthwhile to further justify this

prescription from the gravity point of view, and to develop the holographic renormalisation

with this asymptotics.

D. Details of the consistent truncations

D.1 Reduction with m2 = 8

We provide the details of the Kaluza-Klein reduction discussed in section 4.1, leading

to (4.10). Let us first use the metric ansatz of the form

ds210 = ds2(M)string + e2Uds2(BKE) + e2V (η + A)2 . (D.1)

Note that the five-dimensional part of the metric differs from what is used in (4.6) by a

Weyl transformation. A is a connection on M which will be set to zero in this subsection.

It is included here because we turn it non-zero in the reduction with m2 = 24.

The Ricci tensor has the following components in the flat indices:

Rab = R
(5)
ab − 4(∂aU∂bU + ∇a∂bU) − (∂aV ∂bV + ∇a∂bV ) − 1

2
e2V FacFbc , (D.2)

Rij = δij(6e
−2U − 2e−4U+2V − 4∂aU∂

aU − ∂aU∂
aV − �5U) , (D.3)

Rφφ = 4e−4U+2V − 4∂aU∂
aV − ∂aV ∂

aV − �5V +
1

4
e2V FabFab , (D.4)

Rai = Riφ = 0 , (D.5)

Raφ = −1

2
e−4U−2V∇be4U+3V Fba , (D.6)

where R
(5)
ab is the Ricci tensor of ds2M and the covariant derivatives are with respect to

ds2M ; F = dA is the curvature of A. For Y = S5 or Y = T 1,1, vanishing of Rai and Riφ
immediately follows from the symmetry of the Kähler-Einstein base CP

2 or CP
1 × CP

1

respectively. For generic Sasaki-Einsteins one needs to calculate explicitly to see that they

vanish.

The field strength H of the two-form B is

H = F ∧ η − 2A ∧ J , (D.7)

so we have

HABCH
ABC = 3e−2V FabF

ab + 48e−4UAaA
a . (D.8)

Plugging these into the 10-dimensional action (4.9), we obtain the following 5d action:

S =
1

2

∫

d5x
√−ge4U+V

[

R(5) + 24e−2U − 4e−4U+2V − 8e−8U−2V − 1

2
∂aΦ∂

aΦ

+ 12∂aU∂
aU + 8∂aU∂

aV − 1

4
e−Φ−2V FabF

ab − 4e−Φ−4UAaA
a

]

. (D.9)
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By construction, any ansatz of our form (4.6) which is a solution of 10d equations of

motion, gives a 5d metric ds2(M), the scalars U , V and Φ and the gauge field A which solve

the equations of motion of the 5d action (4.10). An interesting fact is that the converse is

true, i.e. given a solution to the equations of motion for (4.10), the 10d fields constructed

along our ansatz (4.6) automatically solve the 10d equations of motion. In other words,

ours is a consistent reduction including massive gauge fields and scalars.

Indeed, the F5 is self-dual and closed by construction, F5 ∧H = 0 is also automatic;

the Φ equation of motion is exactly the same in 5d and in 10d; moreover it is easily verified

that H satisfies d ⋆ H = 0 if A solves the Proca equation which follows from (4.10).

Therefore the only thing to check is the equations of motion of the metric, (4.4). Let

us denote the equations as

0 = EMN ≡ RMN − (right hand side of (4.4)) . (D.10)

The “off-diagonal” parts, i.e. EMN with (M,N) = (a, i), (a, φ), and (i, φ), are automatically

zero because RMN , ∂MΦ∂NΦ, HMABHN
AB and FMABCDFN

ABCD are all automatically

zero. Moreover, Eij is proportional to δij , Eij = EBδij . So the non-trivial equations are

Eab = 0 , EB = 0 , Eφφ = 0 . (D.11)

However, a direct calculation shows that Eab = 0 is the equations of motion of the 5d

metric ds2M , EB = 0 is the one for the scalar U , and Eφφ = 0 is the one for the scalar V .

It is as it should be, because EB is by definition the variation of the action with respect

to the size of the Kähler-Einstein base, which is controlled by U , etc. This concludes the

proof that the reduction is consistent.

Let us change the 5d action to the 5d Einstein frame, which is the form presented in

the main part of the paper. This can be achieved by

ds2(M)string = e−
8
3
U− 2

3
V ds2(M) . (D.12)

Then the action becomes

S =
1

2

∫

d5x
√−g

[

R+ 24e−
14
3
U− 2

3
V − 4e−

20
3
U+ 4

3
V − 8e−

32
3
U− 8

3
V

− 1

2
∂aΦ∂

aΦ − 28

3
∂aU∂

aU − 8

3
∂aU∂

aV − 4

3
∂aV ∂

aV

− 1

4
e−Φ+ 8

3
U− 4

3
V FabF

ab − 4e−Φ−4UAaA
a

]

. (D.13)

Finally one diagonalises the scalar kinetic term by setting u = 2
5 (U−V ) and v = 4

15 (4U+V )

to arrive at (4.10). The final result agrees with the result in [35] and in appendix C of [61]

after setting Φ and A to zero, where the Kaluza-Klein reduction with the metric, U and

V was performed. Their scalars q, f are related to ours by a factor of two, f = u/2 and

q = v/2.
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D.2 Reduction with m2 = 24

The ansatz we consider is

ds2 = ds2(M)string + e2Uds2(BKE) + e2V (η + A)2 , (D.14)

F5 = 4e−4U−V vol(M) + 4e−4U+V (η + A) ∧ ⋆5A + e−V ω ∧ ⋆5F

+ 2ω2 ∧ (η + A) + 2ω2 ∧ A− ω ∧ (η + A) ∧ F , (D.15)

and all other fields vanishing. We denote F = dA and F = dA. We will go to the five-

dimensional Einstein frame in the last step. F5 = ⋆F5 holds by construction. dF5 = 0

imposes

d(e−4U+V ⋆5 A) = 0 , (η component)

d(e−V ⋆5 F) = −8e−4U+V ⋆5 A + F ∧ F , (ω component)

dF = 0 , (ω ∧ η component)

F = F + F , (ω ∧ ω component) . (D.16)

The components of the Ricci tensor was tabulated in (D.2),. . . ,(D.6). The Einstein equation

in ten dimensions is given by RMN = QMN where QMN ≡ 1
96FMABCDFN

ABCD, which has

the following values in the flat indices:

Qab = −4e−8U−2V ηab

+4e−8U (2AaAb − ηabAcA
c) +

1

4
e−4U−2V (4FacFb

c − ηabFcdF
cd) , (D.17)

Qij = δij
(

4e−8U−2V + 4e−8UAaA
a
)

, (D.18)

Qφφ = 4e−8U−2V − 4e−8UAaA
a +

1

4
e−4U−2V

FabF
ab , (D.19)

Qai = Qiφ = 0 , (D.20)

Qaφ = 8e−8U−VAa −
1

8
e−4U−2V ǫabcdeF

bc
F
de . (D.21)

Then Raφ = Qaφ gives

d(e4U+3V ⋆5 F) = 16e−4U+V ⋆5 A + F ∧ F , (D.22)

Rab = Qab is

R
(5)
ab = 4(∂aU∂bU + ∇a∂bU) + (∂aV ∂bV + ∇a∂bV ) − 4e−8U−2V ηab

+
1

2
e2V FacFbc + 4e−8U (2AaAb − δabAcA

c) +
1

4
e−4U−2V (4FacFb

c − δabFcdF
cd) ,

(D.23)

and finally Rij = Qij and Rφφ = Qφφ give respectively

�5U = 6e−2U − 2e−4U+2V − 4∂aU∂
aU − ∂aU∂

aV − 4e−8U−2V − 4e−8UAaA
a , (D.24)

�5V = 4e−4U+2V − 4∂aU∂
aV − ∂aV ∂

aV +
1

4
e2V FabFab − 4e−8U−2V

+ 4e−8UAaA
a − 1

4
e−4U−2V

FabF
ab . (D.25)
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This set of equations comes from the 5d action

S =
1

2

∫

d5x
√−ge4U+V

[

R(5) +24e−2U −4e−4U+2V −8e−8U−2V +12∂aU∂
aU +8∂aU∂

aV

− 1

4
e2V FabFab − 1

2
e−4U−2V

FabF
ab − 8e−8UAaA

a

]

+
1

2

∫

A∧ F ∧ F . (D.26)

To check the equations of motion, the following formula is useful:

1√−g
δ

δgab

∫

dnx
√−gXR = X(Rab −

1

2
gabR) −∇a∂bX + gab�X , (D.27)

where X is a scalar field. Changing to the Einstein frame in five dimensions, we obtain the

action (4.21).

E. Supersymmetry analysis of the Schrödinger vacuum

Here we study the supersymmetry preserved by the background (3.34). Supersymmetric

extensions of the non-relativistic conformal groups were studied in [8, 62 – 65]. Hereafter

we denote the generators of the supertranslation and the special superconformal transfor-

mations of the relativistic superconformal algebra by Q±, S±, respectively. The subscripts

± shows the charge under the boost, so we have for example {Q+, Q+} ∝ P̃+. We find

that the solution does not preserve any supersymmetry.11

Let us first recall the supersymmetry variations of the fermions in the theory. We

follow the notations in [66]. In particular, we combine two Majorana-Weyl spinors ǫ1,2

of type IIB supergravity into a complex Weyl spinor ǫ = ǫ1 + iǫ2 and ǫc is its complex

conjugate, ǫc = ǫ1 − iǫ2. Then the gravitino transformation law in the Einstein frame is

δψM = DM ǫ−
i

96
e−Φ/2

(

ΓM
ABCHABC − 9ΓABHMAB

)

ǫc +
i

192
ΓABCDFMABCDǫ , (E.1)

and that for the dilatino is

δλ = − 1

24
e−Φ/2ΓABCHABCǫ , (E.2)

where we have set the RR-axion and the RR 2-form to zero since they do not appear in

our ansätze.

Let us determine first the supersymmetry preserved by the AdS5×S5 compactification

of type IIB string theory, where the x− direction is compactified to break the relativistic

conformal symmetry to the Schrödinger symmetry. The gravitino variation is

δψµ = ∂µǫ−
1

2
ΓµMǫ , M ≡

(

Γ4 −
i

4
F01234Γ

01234

)

(E.3)

for µ = 0, 1, 2, 3. Recalling F01234 = 4 in our convention, the operator M above vanishes

in the sector where iΓ0123 = 1, which fixes the chirality of ǫ, where ǫ is independent of

x+,−,2,3. Let us denote this “Q sector” temporarily.

11We thank the authors of [14] for pointing out the error in our statement in the first version of this

paper.
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The commutator of two supersymmetry transformation gives

[δǫ, δǫ′ ] ∝ (ǫγM ǫ′)∂M ; (E.4)

so the commutator of two ǫ’s in the sector Q gives a diffeomorphism which is independent

of x+,−,2,3. They correspond to the translations P̃µ which in turn means the sector Q

generates supertranslations Q±, and other spinors with opposite chirality iΓ0123 = −1

correspond to the special superconformal generators S±.

Let us compactify the x− direction, x− ∼ x− + 2πr−. We can choose boundary

conditions for the fermion, but under the most naive one the preserved supersymmetries

are independent of x−. Then (E.3) requires

Γ+(1 − iΓ0123)ǫ = 0 . (E.5)

Therefore the preserved supersymmetry generators are Q± and S−, and the superalgebra

of the background preserves 3/4 of the original supersymmetry.

Now we will show that the Schrödinger vacuum (3.34) does not preserve supersymme-

try. We will show that a Killing spinor does not exist. Using the value of the H field, we

see that setting to zero the dilatino variation we get the condition

0 = δλ = −σ
2
Γ+ω

/

C
ǫ . (E.6)

This imposes Γ+ǫ = 0 because ω
/

C
is clearly invertible. Then, consider the equation that

arises from the δψ+ part of the gravitino variation

0 = δψ+ =
1

r
∂+ǫ−

1

2
Γ+Mǫ+

3iσ

8
ω
/

C
ǫc. (E.7)

The compatibility of Γ+ǫ = 0 and the evolution along x+ imposes iΓ0123ǫ = ǫ. It implies

iΓ0123ǫc = −ǫc, which means that we cannot impose iΓ0123ǫ(x+) = ǫ(x+) for all x+.

Therefore there is no supersymmetry preserved by this background.
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